Biofuel

The term biofuels usually refers to liquid fuels and blended components that are produced from biomass materials which are referred to as feedstocks. Biofuels are used as transportation fuels, as well as for heating and electricity generation.

biodiesel-feedstocks-caster-oil-and-cwg
Biodiesel Feedstocks – Moringa Oil & Neem Oil 1024 721 Star Oilco

Biodiesel Feedstocks – Moringa Oil & Neem Oil

We’re continuing our deeper look into different types of feedstock that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report. This posts two feedstocks are Moringa oleifera Oil and Neem Oil.  To see more of the feedstocks we have already covered follow this link to the main page of feedstocks we have examined so far.

Moringa oleifera Oil

Moringa oleifera is a tree with the common names moringa, drumstick tree, horseradish tree and ben oil tree.The tree and seedpods of Moringa oleifera in Dakawa, Morogoro, Tanzania. This tree ranges in height from 15 to 30 feet tall, and is native to India, Africa, Arabia, Southeast Asia, the Pacific and Caribbean islands, South America, and the Philippines. This deciduous tree is fast-growing and drought-resistant. It loves sun and heat and doesn’t tolerate freezing weather. Moringa oleifera is a slender tree with drooping branches, brittle stems and whitish-grey corky bark. It has feathery green to dark-green foliage tripinnate leaves and yellowish-white flowers. The trees usually begin producing about second year about 300 pods, but it can take a few years to get to the 1000 or more pods a good tree can yield.

There are a vast amount of uses for this tree. According to Purdue University, almost every part of the plant has value as a food. The seeds can be eaten like a peanut, the roots can be eaten and taste like horseradish, and the leaves are eaten in salads, curries and used for seasoning.

The plant has other non-food uses include Moringa seeds being pressed for oil. This oil is used in arts and lubricating small and delicate machines, and it clear, sweet and odorless it is edible and is also used in manufacturing perfumes and hair products. The wood can be used to create a blue dye and the bark is used in tanning.

The oil from the seeds contain between 33 and 41 % oil. It is also known as Ben Oil, due to its content of behenic (docosanoic) acid. This oil can be used in the production of biodiesel, (Source) and the remaining seed cake can be used as fertilizer.

Morigna Oil and Morigna Biodiesel

Morigna oleifera Biodiesel Certificate of Analysis

 

 

Neem Oil

The Neem tree is also known as nimtree, Indian lilac, or margosa tree. ABHIJEET (photographer) (2014, September 19) Neem tree in banana farms at Chinawal, India. The scientific name is Azadirachta indica. This large evergreen tree that is usually 49 to 66 ft tall but can get as big as 130 ft tall. This fast growing  tree is found in India, Pakistan, Sri Lanka, Burma, Malaya, Indonesia, Japan, and the tropical regions of Australia. It has long skinny leaves that are dark green in color and produces white fragrant flowers. The flowers produce a smooth olive like fruit. The seed in the center is called the kernel which contain 40-50% of an acrid green to brown colored oil.  The oil in the REG study was pure, cold pressed neem oil that was purchased from The Ahimsa Alternative, Inc.

This tree can tolerate high to very high temperatures but does poorly in temperatures below 40o F.   It grows best in dry, sandy well-draining soil. (Source)  Neem trees are drought resistant, but begin to lose leaves in prolonged droughts. The tree propagates itself by seeding and in some non-native environments the plant has been classified as a weed.

There are many uses of the Neem tree. The wood is strong and durable, the tree is related to the mahagony family, so furniture and other durable good can be made from the wood.  The leaves are dried and used in cupboards as an insect deterrent to prevent insects from eating clothes and rice. The trees oil and products can be found in shampoos, soaps creams, toothpastes and mouthwashes. The young twigs are even used as toothbrushes in rural areas. (Source)   The oil extracted from the seeds are used as a natural insecticide, repellent and fungicide. The oil is also used as a lubricant, lamp fuel and can be turned into biodiesel.

Neem Oil & Neem Biodiesel

NEEM Biodiesel Certificate of Analysis

 

Last article for biodiesel feedstocks was Lesquerella Oil & Linseed Oil.

Caravan of white trucks on country highway under blue sky
Renewable Diesel as a Major Transportation Fuel in California 1000 723 Star Oilco

Renewable Diesel as a Major Transportation Fuel in California

RENEWABLE DIESEL IS AVAILABLE

STAR OILCO HAS RENEWABLE DIESEL FOR YOUR FLEET

In the Pacific Northwest we have gone from a complete scarcity of Renewable Diesel availability to several players having terminal positions and this next generation sustainable fuel being readily available.  Star Oilco is ready to serve you with renewable diesel in several blends to meet both your fleet’s financial and carbon budgets.

For years California has lead the west coast with availability of renewable diesel and various blends with both petroleum diesel and biodiesel fuels. This experience is available in the research paper below to help inform your fleet in making decisions about de-carbonizing your fleets.

IS RENEWABLE DIESEL WORTH THE ADDED COST?

Fleet managers fell in love with this exceptionally high quality synthetic diesel fuel. Cleaner and drier than your typical petroleum diesel quite  a few believers are willing to pay a large premium for this fuel.  There are hardcore supporters of this fuel and it’s overall ability to reduce operational cost in far excess of it’s added cost. Which raises the next question.  Is it superior to petroleum diesel?

Caravan of white trucks on country highway under blue sky

IS RENEWABLE DIESEL SUPERIOR TO PETROLEUM DIESEL?

The answer points to yes based on initial experience rating the fuel on real world performance, fuel mileage, emissions system maintenance costs, and the much lower CO2 emissions.

The whitepaper shown is probably the most in depth resource for a fleet seeking to understand the potential of renewable diesel for its own use.

Renewable diesel is a next generation diesel fuel.  It has a low CO2 footprint similar to biodiesel, yet it is a high performance fuel that reduces down time and maintenance in urban stop-and-go fleet use.  Long story short, it is an impressive fuel solving many problems associated with modern clean diesel engines.

Given the newness of this fuel along, with the few producers of it, there is a real lack of in depth research on the subject.

If you have any questions about Renewable Diesel please feel free to contact us.

RENEWABLE DIESEL AS A MAJOR TRANSPORTATION FUEL

This white paper is the most in depth examination of Renewable Diesel operating in the real world. It covers a complete view of the product from the perspective of both fleets operating it and regulators seeking to reduce emissions. In our experience this is the most complete document you are going to find to advise a fleet considering using R99 Renewable Diesel.

Whitepaper – Renewable Diesel as a Major Transportation in California: Opportunities, Benefits, and Challenges.
Whitepaper that Gladstein, Neandross and Associates produced for the Bay Area Air Quality Management District and South Coast AQMD.

This report reinforces the manufacturers of renewable diesel’s statements and many anecdotal statements from fleets using the fuel. Renewable diesel sees superior performance in both emission reduction and performance in existing diesel technology. It is a cleaner burning and lower CO2 fuel that also contributes to a lower cost of vehicle maintenance.

According to this August 2017 report, California was on course to see approximately 250,000,000 gallons of R99 fuel sold in the state that year. This is a world-shaking volume of a next generation biofuel. With these readily adopted volumes, no doubt more product will be finding its way into the marketplace. The report cites a CARB expectation of the California Renewable Diesel market growing to over 2,000,000,000 (that’s BILLION) gallons in the next decade.

biodiesel-feedstocks-caster-oil-and-cwg
Biodiesel Feedstocks – Lesquerella Oil & Linseed Oil 1024 721 Star Oilco

Biodiesel Feedstocks – Lesquerella Oil & Linseed Oil

We’re continuing our deeper look into different types of feedstock that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report. This posts two feedstocks are Lesquerella Oil & Linseed Oil.  Here is a link to the main page of feedstocks we have examined so far.

Lesquerella fendleri Oil

Lesquerella fendleri, also known as Physaria fendleri, is part of the mustard family. (Lesquerella) Physaria Fendleri part of the mustard familyThe common names of this plant are popweed and Fendler’s bladderpod. This silvery-gray perennial has four-petaled yellow flowers that grow on a plant that is about 1 to 16 inches tall. Found in plains and mesas in the southwestern United States, it requires low water usage and is one of the first of the flowering wildflowers in the spring (Source).

Lesquerella produces hairless capsules called siliques which contain 6 to 25 seeds. These seeds contain 20-28% oil with around 62% lesquerolic acid. Lesquerella oil is a source of hydroxyl unsaturated fatty acids, and is useful as a replacement for castor oil in some applications.

While there are benefits from using this seed oil, the dark reddish-brown color of the oil is a potential limiting factor. Potential selective breeding and domestication of the plant may solve this issue, but there haven’t been much momentum at this time. That being said, there have been some studies about growing this plant for its oil and the natural gum in its seed coat for commercial use.

 

Lesquerella Oil and Lesquerella Biodiesel

Lesquerella BioDiesel Certificate of Analysis

 

 

Linseed Oil

Linseed (Linum usitatissimum) is also known as flax in North America. The plant is an annual and can grow in large range of climates. Linseed Oil and SeedsFor example, it grows in Argentina, India, and Canada. Linseed oil has been traditionally used as a drying oil. According to REG report, these seeds contains 37-42% oil. The crude oil contains 0.25% phosphatides, a small amount of crystalline wax, and a water-soluble resinous matter with antioxidant properties.

As one the earliest cultivated field crops in the US, it has found many uses for its oils. Linseed oil can be used as a varnish, pigment binder or to manufacture linoleum. These applications have seen reductions in use due to synthetic options that resist yellowing. Other uses for this plant are as nutritional supplements and foods, although raw linseed oil can become rancid unless refrigerated.  After the oil has been pressed out of the seeds, the leftover residue makes great animal food.

As some of the traditional uses of the plant are replaced with other options, use of this crop for a feedstock in biodiesel is an option.

Linseed Oil and Linseed biodiesel

 

Last article for biodiesel feedstocks was Jatropha Oil, Jojoba Oil, & Karania Oil.

biodiesel-feedstocks-caster-oil-and-cwg
BioDiesel Feedstocks – Jatropha Oil, Jojoba Oil, & Karania Oil 1024 721 Star Oilco

BioDiesel Feedstocks – Jatropha Oil, Jojoba Oil, & Karania Oil

Jatropha Oil, Jojoba Oil, & Karania Oil

We are continuing our deeper look into different types of feedstock that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report. If you would like to see what feedstocks we have talked about, this is the main page and it links to the ones we have examined.

As a reminder, B20 biodiesel (B20 stands for 20% biodiesel and 80% petroleum diesel) is the drop-in solution for reduced emissions in today’s modern diesel engines. To understand some of the alternate feedstocks that can be used for biodiesel, we are examining a report that Renewable Energy Group (REG) produced in 2009. All certificates of analysis and results are for B100.

This post is a bit different as we have only one successful biodiesel created and two failures. The oils are jatropha oil, jojoba oil and karanja oil.

Jatropha Oil

Jatropha oil comes from the shrub Jatropha curcas, also known as physic nut, Barbados nut, poison nut, bubble bush or purging nut. This plant is a succulent that loses its leaves during the dry season. It is best adapted for arid and semi-arid conditions. The resistance to high degrees of aridity allows it to grow in deserts. This shrub can thrive on only 10 inches of rain for a whole year. It is native to Mexico, Central America, Brazil, Bolivia, Peru, Argentina, and Paraguay. Jatropha curcas is considered a shrub or small tree and can reach a height of 20 ft. or more.Top of a Jatropha plant as part of a hedge

 “Shrubs begin to produce when only 4 – 5 months old, and reach full productivity at about 3 years Under good rainfall conditions, nursery plants bear fruit after the first rainy season, while directly seeded plants bear for the first time after the 2nd rainy season. With vegetative propagation, the first seed yield is higher. At least 2 – 3 tonnes of seeds per hectare can be achieved in semi-arid areas.” (Source)

The seeds contain 27% to 40% oil (Source) and develop in 90 days from the flower to the seed. Trees can have a productive life of 40 to 50 years without tending.

Uses of the plant include medical, edible and as a source of oil for biofuels. The young shoots and even young leaves can be cooked and eaten as a vegetable. The nuts can be eaten but they are purgative and, if eaten in large quantities, can be poisonous.

Medicinal uses include uses the juice from the bark as a treatment for malarial fevers and or using it to treat external burns, scabies and ringworm (Source).

The low maintenance and high oil content makes this plant attractive as a biofuel feedstock. In addition to its use for biodiesel, the oil has been made into jet fuels. In 2008, Air New Zealand flew a plane on 50/50 mix of jatropha oil fuel and jet A1 fuel (Source).

Currently biodiesel is being produced from this plant in the Philippines, Pakistan and Brazil.

 

Jatropha Oil and the biodiesel it produces

Jatropha biodiesel certificate of analysis

Jojoba Oil

Golden jojoba oil was produced from the plant called jojoba (Simmondsia chinensis), an evergreen perennial shrub grown in Arizona, Mexico, and neighboring areas. Some of the common names of this are goat nut, deer nut, pignut, wild hazel, quinine nut, coffeeberry and the gray box bush (Source). The dehulled seeds of jojoba contain 44% of liquid wax ester, which is not a triglyceride.

Seeds on a Female Jojoba BushThis shrub grows to 3 to 6 feet tall and some can get as tall as nearly 10 feet. The fruit is acorn-shaped and .4 inches to .8 inches long.  The seed is dark brown.

Uses of the plant include forage for wild animals such as deer, bighorn sheep and some livestock. In large quantities, the seed meal is toxic to many animals. The oil is different than many of the feedstocks we have discussed.

“Jojoba is unique in that the lipid content of the seeds, which is between 45 and 55 wt.%, is in the form of long-chain esters of fatty acids (FA) and alcohols (wax esters) as opposed to triacylglycerols (TAG) encountered in other vegetable oils and animal fats” (Source).

Because of this, the Jojoba oil wasn’t made into a biodiesel for this study. According to the REG Report:

“The purpose of this project was to transesterify all the feedstocks using the same procedure and if jojoba was done differently, comparisons could not be made with jojoba methyl esters. Jojoba can be transesterified and used as a fuel using a different process.”

Jojoba Oil as a biodiesel feedstock

Karanja Oil

Pure, cold pressed karanja oil was purchased from The Ahimsa Alternative, Inc.Karanja Tree source for Biodiesel Karanja (Pongamia pinnata) is a medium sized evergreen tree, and usually about 25 ft. tall but can grow as large as 80 ft tall (Source). The tree has dark green leaves and the very fragrant flowers of lavender, pink and white.  The tree grows in the humid tropic and can be found in India, China, and Japan. The seed contains 27-39% oil.

Karanja is used for oil production and has some successes in India as a feedstock. In regards to this study, they weren’t able to create a biodiesel fuel using the same procedure as the rest of the feedstocks and therefore there isn’t a sample created to test.

REG’s notes about this oil are as follows:

“Esterification was only able to reduce the FFA (Free Fatty Acid) of the oil to 0.7 wt %. Since 0.5 wt % was the maximum amount of FFA allowed in the feedstock, karanja was not made into biodiesel using the standard procedure. A small scale experiment was performed to see what would happen to the karanja when it was transesterified. A 20 gram sample of karanja oil was used, along with the standard ratios of chemicals as in the other feedstocks for the project. After the water wash step, the karanja formed an emulsion with the water and the phases would not separate. No further refining experiments were done to make karanja suitable for transesterification.”

Karanja Oil

Last article for biodiesel feedstocks was Hemp Oil & High IV and Low IV Hepar

biodiesel-feedstocks-hemp-oil
BioDiesel Feedstocks – Hemp Oil & High IV and Low IV Hepar 1024 683 Star Oilco

BioDiesel Feedstocks – Hemp Oil & High IV and Low IV Hepar

In this post we are going to continue our deeper look into different types of feedstock that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report. The feedstocks we are looking into are Hemp Oil & High IV and Low IV Hepar. Here is a link to the main page of feedstocks we have examined so far.

As a reminder B20 Biodiesel (B20 stands for 20% biodiesel and 80% petroleum diesel)  is the drop in solution for reduced emissions in today’s modern diesel engines.   To understand some of the alternate feedstocks that can be used for biodiesel, we are examining a report that Renewable Energy Group (REG) produced in 2009. All certificates of analysis and results are for B100.

Hemp Oil

Hemp seed oil comes from the plant Cannabis sativa and contains significant amounts of linolenic acid. The hemp oil in this study was sourced out of Canada and these seeds have an oil content of 33 percent. Cannabis sativa male picture of flowers

Based on Industrial Hemp Regulations in Canada:

“Industrial hemp includes Cannabis plants and plant parts, of any variety, that contains 0.3% tetrahydrocannabinol (THC) or less in the leaves and flowering heads.

Industrial hemp also includes the derivatives of industrial hemp plants and plant parts. These do not include the flowering parts or the leaves.

Examples of derivatives that are considered industrial hemp include: hemp seed oil (oil derived from seed or grain) and hemp flour.”

THC is the chemical that has psychoactive properties and is what makes the cannabis Marijuana vs Hemp.

This biodiesel sample was created with seed oil that contained less than .03% THC.

Cannabis sativa is an annual flowering plant that originates in Central Asia and is now spread world-wide. The uses of the plant include seed oil, food, recreation, medicine and industrial fiber. (Source)

The centuries of early human cultivation of these plants has created a large variety of strains that look, grow and act different.  Pictured is an example of what a Hemp or Marijuana plant looks like in bloom.

 

Hemp Oil and hemp Biodiesel

Hemp Oil Biodiesel Certificate of Analysis

 

 

Hepar, High Iodine Value and Low Iodine Value (IV)

In this situation, Hepar is a byproduct of the heparin manufacturing process. Pharmaceutical grade heparin is derived from the mucosal tissues and of animals, such as pig intestines or cow lungs. (Mucosal tissues are part of the immune system it is the barrier between potential pathogens and the body.) Heparin is a medicine that is used as an anticoagulant.  Since the creation of Heparin is a industry secret, it is difficult to find much information about the byproduct Hepar.

High IV Hepar and Biodiesel

High IV Hepar Biodiesel Certificate of Analysis Low IV Hepar BioDiesel Certificate of Analysis

 

Last article for biodiesel feedstocks was Evening Primrose Oil & Fish Oil

biodiesel-handling-and-use-guide
Biodiesel Handling and Use Guide (5th Edition 2016) 1024 683 Star Oilco

Biodiesel Handling and Use Guide (5th Edition 2016)

Where to start when fueling your fleet with biodiesel.

 

The U.S. Department of Energy’s Biodiesel Handling and Use Guide (Fifth Edition)

If you are a fleet seeking to reduce your CO2 footprint and biodiesel is your drop in solution, this book is your guide.  The Biodiesel Handling and Use Guide is the definitive user’s manual for fleets seeking to field biodiesel and blends as a substitute for petroleum diesel (available from the US Department of Energy’s Alternative Fuel Data Center).

Biodiesel is diesel-rated fuel manufactured from animal fats and vegetable oils by way of a chemical reaction. It is not diesel fuel but it has extremely similar properties, allowing it to be blended with petroleum diesel.

As a drop in fuel, it substantially reduces tailpipe emissions and cuts CO2 emission by more than half when used as a substitute for petroleum diesel. Many states and the federal government have financial incentives to encourage its use. Several states also have mandates for the use of biodiesel as a blend component with diesel fuel.

In the last twenty years biodiesel has come a long way and it is now a mainstream fuel around the United States. In just the last ten years, a great deal has changed with the complexity of diesel engines, the sources of crude oil refined into ultra-low sulfur on road diesel, and the complexity diesel fleets will encounter in operating day-to-day. This book is a scientific and easy-to-read manual to help you navigate success with modern diesel.

The Biodiesel Handling and Use Guide covers the technical aspects of biodiesel and how it differs from petroleum diesel. It also provides advice on higher blends and storing fuel onsite. This guide goes in-depth about equipment compatibility for your refueling infrastructure as well as maintenance concerns you want to get ahead of. There are also checklists included for fleets seeking to move from petroleum diesel to higher blends of biodiesel.

If you have questions or want help in using higher blends of biodiesel in your fleet, don’t hesitate to contact Star Oilco. Even if you are not in our service area, we will be here to help. Star Oilco has been helping fleets succeed with biodiesel blends since 2003.

B20 Biodiesel A PROVEN FUEL

Contact Form

  • This field is for validation purposes and should be left unchanged.

For further reading on Biodiesel please see the following Star Oilco pages:

Every Question Star Oilco has been asked about Biodiesel

B20 Biodiesel; a Proven Fuel

Oregon Biodiesel Tax Breaks for Retail Stations

In-Depth look at Biodiesel as a Heating Fuel

 

b20-biodiesel-a-proven-fuel
B20 Biodiesel, a Proven Fuel 1024 408 Star Oilco

B20 Biodiesel, a Proven Fuel

Using Biodiesel in the Pacific Northwest.

(NOTE: B20 refers to 20% biodiesel blended with an 80% petroleum diesel percentage. B5 refers to 5% biodiesel blended with petroleum diesel which is the legally required blend percentage in Oregon state. For more on biodiesel basics, visit the US DOE.)

Biodiesel is the “Drop In Solution” used in the Pacific Northwest to reduce CO2 emissions in diesel equipment.

If you are looking to use Biodiesel in a fleet or a personal vehicle it is as easy as just asking for it.  In Oregon the fuel is everywhere.  From an Oregon and Washington state requirement for a minimum 5% of biodiesel blended with every gallon to large financial incentives this low carbon diesel fuel is ready for you if you want it.

It’s not just the Pacific Northwest.  For years B20 has been a defacto blend at some of the biggest names in fuel. When you pull up to the pump on the west coast you are likely getting B5 or B20 as a blend. In Oregon, B5 biodiesel is the required fuel by law. Oregon also has a B20 incentive for a waiver of state on road taxes.  Washington as well has requirements that biodiesel finds its way into retail and commercial diesel throughout the state.   Additionally, Oregon and California have “Clean Fuel Standard” programs which heavily incentivize low CO2 fuels like biodiesel.  Washington state is expected to pass their own Clean Fuel Standard as well this year.  Biodiesel has been a fact of life in fuel for over a decade in the United States and Pacific NW and it is not going away.

Due to a mix of federal and state incentives to use biodiesel, there can also be financial advantages for a fleet dedicated to making B20 biodiesel its fuel of choice. You can see evidence of this at truck stops and other retailers making B20 available in Oregon and Washington, as well as in the trucking lanes of the United States. America’s largest fleets are choosing B20 biodiesel in order to reduce their cost per mile. So can you.

In an effort to deliver the best value to truckers, many U.S. truck stops are blending biodiesel up to 20% when the market enables them to pass along a lower cost yet high quality ASTM specified diesel fuel to their customers. Most prominent is Pilot/Flying J, who lists where and when their sites are serving up B20 or lower blends. Pilot/Flying J buys biodiesel directly and blends on site in order to give their customers the best value possible. Loves Travel Centers also sell biodiesel blends around the U.S.

In Oregon, due to a diesel road tax waiver on B20 sales, gas station retailers Safeway, Leathers Fuel, Spaceage, and others are offering B20 biodiesel as their retail diesel offering. Oregon’s system requires the biodiesel be sourced from used vegetable oil refined biodiesel products. Biodiesel has been in Oregon’s fuel supply since 2006 when the city of Portland mandated B5 biodiesel blends within its city limits. The state of Oregon followed Portland with its own statewide mandate not long after.

(NOTE: If you operate a retail gas station and are curious about Oregon’s fuel tax breaks for biodiesel blends here is a more in depth article Oregon Biodiesel Tax Breaks for Retail Fuel Stations that explains these rules for retailers of fuel).

Biodiesel has been in our fuel system since 2006 and the technology that goes into making it has vastly improved. It is proven in diesel engine performance while also creating a diversified supply for energy and significantly reducing emissions from the working fleets of the world. Biodiesel substantially reduces emission coming out of your stack without a major impact on price because it helps to offset high diesel prices.

B20 Biodiesel A PROVEN FUEL

If you want to look at using B20 blends in your fleet, we are here to help. Star Oilco carries B20 blends for mobile onsite refueling every day of the week. We also have dyed/off-road/heating oil blends of B20. If you are an over the road fleet we can provide B20 at our cardlocks as well as help you procure it with a fleetcard over the road. Let us know if we can be of help.

Contact Form

  • This field is for validation purposes and should be left unchanged.
biodiesel-feedstocks-evening-primrose-and-fish-oil
BioDiesel Feedstocks – Evening Primrose & Fish Oil 1024 516 Star Oilco

BioDiesel Feedstocks – Evening Primrose & Fish Oil

The two feedstocks we are looking into this time are Evening-Primrose Oil and Fish Oil. Here is a link to the main page of feedstocks we have examined so far.  As we continue our deeper look into different types of feedstock that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report.

Evening-Primrose Oil

The Common Evening-primrose (Oenothera biennis) is also known as evening star, sun drop, German rampion, weedy evening primrose, hog weed, King’s cure-all, or fever-plant.  This plant is native to North America and grows throughout most of the continental US and in Canada. Oenothera biennis (common evening primrose). Flowers and buds

A unique aspect of this plant is that it has a bright yellow flower blooms that is open in the evening and then is closed at noon.(source)  This plant can grow up to 6 feet tall and is a biennial, meaning it lives for 2 years flowering the second year. The plant has leafy branched stems that are ridged and usually has fine white hair.

According to Friends of the wild flower:

“The leaves are both basal and stem. Basal leaves taper to short stalks and form a rosette in the first year of growth. The stem leaves develop the second year when the flowering stem rises; they are alternate, lance-like, wavy edged, slightly toothed, slightly hairy on both surfaces, with one main central vein and fine laterals. They can be up to 8 inches long near the base and 1/4 as wide, but become considerable shorter near the top of the stem.”

A simple google search shows that this plant has medicinal uses, known by some of the indigenous tribes of North America for hundreds of years. Some of the common uses were to treat bruises with a poultice and use the leaves in a tea as a stimulant. The drug in the plant can be used as a sedative and and as an astringent. The oil the plant produces is full of fatty acids and is sold as a dietary supplement.

The roots of the plant can also be boiled and eaten if they haven’t flowered yet. The leaves of the plant can be used before flowering in salads. Even the flowers can be eaten and are said to have a sweet taste.

The ability of the plant to grow in arid conditions and not need a lot of water adds potential of this plant to provide nutrients, oil and medicinal material for drier locations.

 

Evening Primrose Oil and the Bio-Diesel it produces

Evening Primrose Certificate of Analysis

 

 

Fish Oil

The Fish Oil that REG used simply says “Fish oil was obtained from a commercially available source in Peru.”  The types of fish that are used to make fish oil in Peru are anchovy, herring, menhaden or sardines.

This source was likely the same that would be purchased to produce fish oil nutritional supplements or other food products. In the production of biodiesel there is a large potential for this product. Many of the toxins and imperfections that need to come out for human consumption wouldn’t effect the creation of biodiesel.  Fish oil that is produced in the process of fish processing has potential of removing waste from going to landfills. Several scholarly papers have been written on it.  If you would like to know a little more this article was written on the waste from salmon processing in Canada.

Fish Oil and the Fish Bio-Diesel that it produces

Fish Oil Bio-diesel Certificate of Analysis

 

Last article for biodiesel feedstocks was Coconut Oil and Coffee Oil.

coconut-oil-and-coffee-oil
BioDiesel Feedstocks: Coconut Oil and Coffee Oil 1024 683 Star Oilco

BioDiesel Feedstocks: Coconut Oil and Coffee Oil

We are continuing our deeper look into different types of feedstock that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report. This week’s two feedstocks are Coconut Oil and Coffee Oil. Here is a link to the main page of feedstocks we have examined so far.

Coconut Oil

For this feedstock REG purchased refined, bleached, deodorized (RBD) coconut oil.The parts of a coconut tree.

As a background, lets talk a little bit about Coconut trees (Cocos nucifera) they are part of the palm tree family (Arecaceae) and they love sandy soils and can tolerate a high level of salt. The trees prefer regular rainfall, high humidity 70-80% and lots of sunshine.  This is why we see them on the shorelines and beaches in the warmer parts of the world. They need year round warmth and moisture to grow well and produce fruit.  The Coconut palm tree can grow up to 98 ft tall and has 13-20 ft long leaves. A tree can begin producing fruit as early as 6 years but usually take between 15 to 20 years to reach its peak producing capacity. Most trees produce about 30 fruit a year but under ideal conditions they can produce as much as 75 a year.  Coconuts can be found in more than 90 countries with most of the production coming from tropical Asia.  The Philippines, India, and Indonesia account for over 72% of the production.

Coconuts already have a variety of uses, as food, cosmetics and animal food. Virtually every part of the palm can be used by humans for economic value.

Production of the oils used for biodiesel requires the coconut meat be removed from the seeds, dried and then pressed for the oil. A coconut that is between 12 to 15 months old is best for this.  You can expect to get about 50ml of oil per nut. The remaining meal is then able to still be used as an animal feed or can even be turned into a flour for baking.

 

Coconut Oil as a feedstock for Biodiesel.

Biodiesel Certificate of Analysis for Coconut Oil Chart.

 

 

Coffee Oil

Cup of Coffee on Coffee beans, Can this be the next form of BioDiesel?Coffee comes from roasted coffee beans, these “beans” are actually the seeds from berries of the Coffea species, with the two most common species being C. arabica and C. canephora. People have been drinking coffee since the 15th century.  Coffee plants are evergreen shrubs that can grow up to 15 feet tall. They have glossy, dark-green leaves about 4 to 6 inches long.  Brazil, Vietnam, and Colombia are were most of the coffee is coming from.

Most Coffee grounds are thrown away or used as compost, but if we were to extract the oil possibilities arise. Coffee oil comes from spent coffee grounds; the grounds can contain as much as 11 to 20 percent oil. Extracting the oil doesn’t stop the grounds from being used as compost and you now have an oil that can be converted into biodiesel.  In the past the process of extracting the oil was cost prohibitive and took many steps to complete. There have been some recent advances in this process that could change this in the future. This method, if used on all coffee grounds, could produce over 286 million gallons a year of biodiesel.

 

Coffee Oil and the biodiesel that is produced from it.

Biodiesel Certificate of Analysis for Coffee Oil Chart.

 

Last article for biodiesel feedstocks was Castor Oil and Choice White Grease.

biodiesel-feedstocks-caster-oil-and-cwg
BioDiesel Feedstocks – Castor Oil & Choice White Grease 1024 721 Star Oilco

BioDiesel Feedstocks – Castor Oil & Choice White Grease

In this post we continue our deeper look into different types of feedstock that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report. This week’s two feedstocks are Castor Oil and Choice White Grease. For more information and more feedstocks this is the main page of the feedstocks we have examined so far.

Castor Oil

Castor oil comes from Ricinus communis, known commonly as the castor bean plant. While the castor bean is not a real bean, it is called this due to the shape of the seeds.  These seeds consist of about 45-50% oil. Ricinus communis known commonly as Castor Bean plantRicinus communis is a fast-growing shrub type plant that can reach the size of a small tree. This perennial flowering plant is native to the southeastern Mediterranean Basin, Eastern Africa, and India, but grows easily throughout tropical regions. It is not a cold hardy plant, although in a suitable environment it can become invasive.  Castor bean plants are grown as ornamental plants throughout the world and are used extensively as a decorative plant in parks and public areas. The castor bean plan will grow rapidly in a single season, about 6-10’ tall. Ornamentally, it is most valued for its huge, palmately (having four or more lobes or leaflets radiating from a single point) 5-11 pointed lobes, toothed, glossy green leaves (each to 1-3’ across) and round, spikey, reddish-brown seed capsules. Small cup-shaped, greenish-yellow apetalous (lacking flower petals) spikes which are not particularly showy. Different cultivations of the plant result in dwarf and large plants, some with attractive reddish, bronze or purple leaves and bright and colorful flowers. Castor Beans contain about 45-50% oil

An additional benefit of this source of oil is that it doesn’t impact the food supply. The entire plant is poisonous, but has some reported medicinal uses. Other uses of the plant include being used as an insecticide against some ticks and food for silkworms. Castor oil has been used as a lubricant in engines for years, because of the high heat resistance it has historically been used in two-stroke engines.

 

 

 

 

Castor Oil and Bio-diesel sample

Castor Oil biodiesel Certificate of Analysis

Choice White Grease

The US Department of Agriculture defines Choice White Grease (CWG) as “A specific grade of mostly pork fat defined by hardness, color, fatty acid content, moisture, insolubles, unsaponifiables and free fatty acids.”

CWG is similar to beef tallow that we discussed in a previous week. It is an animal by-product, meaning that they are only produced in relation of raising the animal for meat or food production. As we can see from the picture it is a saturated fat and is at least partially solid at room temperature. This means that the resulting B100 biodiesel will have a higher cloud point.  CWG has historically been used as livestock feed. Additionally, using CWG for biodiesel gives pork producers an additional revenue and outlet for the product, helping elevate the return on investment for these farmers.

Choice White Grease and Bio-diesel sample

Choice White Grease biodiesel Certificate of Analysis

 

Last article for biodiesel feedstocks was Algae Oil and Canola Oil.