Biofuel

The term biofuels usually refers to liquid fuels and blended components that are produced from biomass materials which are referred to as feedstocks. Biofuels are used as transportation fuels, as well as for heating and electricity generation.

every-question-we-have-been-asked-about-biodiesel-star-oilco-portland-oregon
Every Question We Have Been Asked About Biodiesel 1024 768 Star Oilco

Every Question We Have Been Asked About Biodiesel

Every Question We Have Been Asked About Bio-diesel

What is biodiesel?

Biodiesel is a renewable, clean-burning diesel replacement that is reducing U.S. dependence on foreign petroleum, creating jobs and improving the environment. Biodiesel is commonly blended in a 5% to 20% component with petroleum diesel and can be found available at retail around North America as a blended fuel.  Biodiesel is a low CO2, net energy positive fuel which depending on the feedstock it is made from can vary from a 30% to 80%+ reduction in CO2 emissions compared to petroleum diesel.  Biodiesel is made from a diverse mix of feedstocks including recycled cooking oil, industrial non-food grade spent oils, animal fats, as well as virgin vegetable oils such as canola, soy, and corn oil. For more information see the National Biodiesel Board’s “Biodiesel Basics” page.Simple Bio-diesel chart showing how to make

How is biodiesel made?

Biodiesel is most commonly made from taking an animal fat, used cooking oil, or a virgin vegetable oil and mixing it with an alcohol (such as methanol). This process is called transesterification and it creates two products glycerin and esters (usually methyl esters or alkyl esters which is the chemical name for most biodiesel).  The crude biodiesel is then further processed to remove excess water and other impurities. The standards for commercially sold biodiesel in the US is ASTM D6751.

What does ASTM D6751 mean?

Biodiesel to be sold in the United States must meet an industry standard which is ASTM D6751.  ASTM (American Society for Testing and Materials) D6751 is the specifications for B100 or 100% Biodiesel.  Biodiesel is usually blended with diesel fuel for retail sale.  This specification defines the properties of the biodiesel from the refiner prior to sale to the public. The properties include things like flashpoint, water content, oxidative stability, sulfur ppm (parts per million), and other specifics that this biodiesel needs to be at in order to hit these standards (Source).

Once a fuel is within all these properties it can be blended with diesel, which has its own ASTM standards, for more about ASTM D975 and other fuel specification concerns please see the Changes in Diesel Fuel – Technicians Guide for more and very in depth information.

Can biodiesel be used in normal diesel engines? / Which cars use biodiesel?

Regardless of where you are in the United States there is a reasonable expectation of purchasing biodiesel in your diesel fuel.  Formally, B5 is supported by all major OEMs selling diesel engines in the U.S. In 2016, at least 78 percent of diesel vehicles supported B20 (Source).  Regardless of what your owner manual says about biodiesel fuel, B20 biodiesel is a proven fuel and is automatically presumed for any new diesels on the road. In many parts of the United States B20 is a commonly found fuel at retail stations, commercial cardlocks, and national truck stop chains.

In the Pacific Northwest, where low CO2 emission policy is front and center, biodiesel can be expected to be found in every gallon of diesel sold in some form.

Oregon law says “All diesel fuel sold in the state must be blended with at least 5% biodiesel (B5) if that fuel is going to be used in vehicles. For the purpose of this mandate, biodiesel is defined as a motor vehicle fuel derived from vegetable oil, animal fat, or other non-petroleum resources, that is designated as B100 and complies with ASTM specification D6751. Renewable diesel qualifies as a substitute for biodiesel in the blending requirement” (Source).  Oregon and Washington has plenty of retail and commercial cardlock locations selling above 5% biodiesel as the defacto fuel given the incentives as well as low CO2 mandates in Oregon.

Can biodiesel be used for heating oil?

Yes. Biodiesel has been effectively used as a heating oil for over 20 years. In fact an in-depth report by the Sustainable Energy Technologies Department Energy Conversion Group shows that blends up to B50 can be used without needing to change or adjust your settings. Read our blog for a summary of this report.

Can biodiesel be mixed with conventional / regular diesel?

Most biodiesel that is sold is as a blended form with petroleum diesel. In a blend, the “B” stands for the amount of biodiesel that is included in the product. For example, B20 would be 20 percent biodiesel and 80 percent petroleum diesel. Biodiesel can also be combined with renewable diesel – a blend of B20 would be called B20/R80 diesel.

[videopack id=”4038″]https://staoilcopro.wpengine.com/wp-content/uploads/2021/03/B20-a-proven-fuel.mp4[/videopack]
Can biodiesel be used in diesel generators?

Yes. In fact, Oregon is one of several states that require biodiesel be blended into all diesel fuels. That means this fuel has been used successfully in the fuel supply for years. As with any fuel that can sit for extended amounts of time, we recommend you take proper precautions, such as using additives, to ensure your fuel is ready to be used when needed. If this is a concern, please contact us – we would love to talk to you about your storage needs.

Can biodiesel be made from animal fat?

Yes, biodiesel refers to (according to the National Biodiesel Board) a methyl ester made from chemically reacting lipids with an alcohol to produce fatty acid esters. This is called transesterification. The lipids could be sourced from many different types of oils, such as vegetable, soybean or animal fat based oils/tallows. For a deeper dive into some of the different types of feedstocks, read our blog.

Can biodiesel be used in airplanes?

Yes and no. There have been several tests using biofuels but fuel for aircrafts is different than regular diesel. Fuel gels at a plane’s flying altitude so aircrafts can’t use regular diesel or biodiesel. Several tests with biofuels have proven successful. Read more about the use of biofuels in the future.

Can biodiesel freeze?

Gelling is the term used for diesel fuel starting to freeze. The paraffin present in diesel starts to solidify and at lower temperatures, it can start to solidify and crystallize. Some blends of biodiesel at B20 and higher will gell at a higher temperatures than petro diesel. During the winter months, it’s important to use additives that combat this or use lower percentages of biodiesel for your fuel. In low enough temperatures, even petro diesel will freeze.

Can biodiesel replace oil? / Can biodiesel replace diesel / fossil fuels?

At this time, no. While the quality of the fuel for biodiesel and renewable diesel is as high as the petrodiesel we have today, the production of these fuels can’t meet the demand that is needed. This has to do with available feedstock and infrasturcture to recycle usable wastes.

The long answer to this question, though, is YES. As technology advances, there may be a time that all fuel is derived from waste and plant crops instead of petroleum.

For an idea where the market is going and how much fuel we are using here is a little bit more information on current usage.

In the early 2000’s, the biodiesel market was about 25 million gallons. In 2016, the market had grown to 2.8 billion and it’s still increasing. The on-road diesel demand is 35 billion to 40 billion gallons. The industry goal is to be producing 10 percent of the transportation market by 2022 (Source).

Which biodiesel is best?

Biodiesel that meets the ASTM D6751 is the best. While making your own biodiesel isn’t hard, keeping the fuel filtered and free of excess water is challenging. Finding a reputable provider that uses fuel that meets specs and also filters and treats your fuel like Star Oilco helps ensure you’re using the best fuel possible.

Which is biodiesel plant/crop? What crop/plant produces/yield biodiesel?

Any plant that produces an oil can be used to produce biodiesel. The plants and crops that are most likely to be used, would produce a lot of oil for the amount of work that goes into growing them. Some of the experimental crops are ones that grow in areas that don’t produce quality food, like Camelina sativa. A member of the mustard family, it grows well in poor soil and harsh conditions and doesn’t displace crops that produce food.

Here are the blogs we have posted so far about some of the biodiesel feedstocks that have been tested and used.

Feedstock: Babassu oil & Beef Tallow
Feedstock: Borage Oil & Camelina Oil
Feedstock: Algae Oil & Canola Oil
Feedstock: Castor Oil and Choice White Grease
Feedstock: Coconut Oil and Coffee Oil
Feedstock: Evening Primrose Oil and Fish Oil
Feedstocks: Hemp Oil & High IV and Low IV Hepar
Feedstocks: Jatropha Oil, Jojoba Oil, & Karania Oil
Feedstocks: Lesquerella Oil & Linseed Oil
Feedstocks: Moringa Oil & Neem Oil
Feedstocks: Palm Oil & Perilla Seed Oil
Feedstocks: Poultry Fat & Rice Bran Oil

Which is better: biodiesel or diesel?

Biodiesel has advantages of producing lower emissions, providing lubricity to the moving parts and being produced in the United States.

Diesel is more abundant, is easily created from crude oil, and has a lower gel point.

Which is better depends on what you are looking for.

Which states mandate biodiesel?

According to AFMP (American Fuel & Petrochemical Manufacturers):

  • Minnesota: Has a B2 requirement year round (September 2005) and a summer requirement of B20 (May 2018).
  • Oregon: Requires a B5 reguirement year round (July 2007).
  • Washington: Requires 2% of the diesel sold in Washington to be biodiesel (December 2008). This can be substituted with Renewable Diesel (July 2009).
  • Pennsylvania: According to AFMP, “2% biodiesel for on-road compression ignition engines one year after annualized in-state production reaches 40 million gallons, 5% biodiesel (100 million gallons), 10% biodiesel (200 million gallons), and 20% biodiesel (400 million gallons)” (July 2008). Renewable diesel can substitute for up to 25% of this requirement, in addition to heating oil and off-road diesel (May 2011)
  • New Mexico: Requires B5 for all diesel vehicles (July 2012).

Which countries produce biodiesel? / Which countries use biodiesel?

global biodiesel production by country
Biodiesel is produced around the world, led by the U.S., Brazil and Germany.

The US produced 6 billion liters in 2017 or about 1.6 billion gallons. This website has the exact numbers for 2017, 2018 and some of 2019 production of biodiesel in the U.S.

Biodiesel in the US is largely made from soybeans at this time.

United States Month Biodiesel Production 2017 to 2019

Will biodiesel damage my engine? / Will biodiesel damage my car?

Biodiesel can be used in any car or engine that is using diesel. Biodiesel is a solvent this means that it may start cleaning the tank or pipes that previously just used petroleum fuel, for this reason fuel filters may clog initially.

How will biodiesel help save money?

It depends! If the price of a barrel of crude rises to a high level, biodiesel can be cheaper. In addition, if RIN’s are available (basically a credit for using biodiesel), they can lower the price of biodiesel and make it less expensive to use and purchase.

How will biodiesel help reduce pollution?

Petrodiesel uses crude oil, which is trapped CO2 from ages past. When it is burned, it releases this CO2 back into the air.Average Biodiesel Emissions Compared to Conventional Diesel When you use biodiesel, you’re using CO2 that is being captured by the growing plants or the waste. This is current CO2 you aren’t adding to the net sum in the environment.

As for regular pollutants, here is a chart that shows what using biodiesel does compared to conventional diesel. There is a significant reduction to pollutants that are expressed through the exhaust.

How long will ecodiesel last? / How long can biodiesel be stored?

Diesel, including biodiesel, does go bad after awhile. Diesel fuels adhering to ASTM specification should be safe for storage up to a year without additional treatment and testing. If you are storing diesel for long term use, it is a good best practice to treat the fuel with a biocide and oxidative stabilizer to ensure that the fuel stays within specification and nothing will begin to grow in your fuel tank. The biggest enemy of long term diesel storage is water and dirt entering the fuel through a tank vent. As temperatures change, a tank will breath, pulling in air and moisture from outside. Keep your fuel within specification by ensuring there is no water in the tank and that outside contaminants can’t get into a tank.

Where biodiesel is used? / Where is biodiesel used in the world?

Biodiesel use is encouraged by many countries and usage has increased greatly since 2001. This graph from the U.S. Energy Information Administration shows that the U.S. used 2.1 billion in 2016 or about 22% of the total amount of biodiesel used that year. Wikipedia lists 31 countries and explains the amount of biodiesel they use each year. World biodiesel consumption, 2016

Where to buy biodiesel?

If you live in Oregon, every gas station has at least 5% biodiesel. Cardlock locations throughout the states have stations with biodiesel blends. For other locations, this site is a great resource.

Where can biodiesel be used?

Legally, it can be used anywhere although some biodiesel derived from palm oil is restricted in certain countries.

When / where was biodiesel invented?

The definition of diesel is a liquid that uses compression and oxygen to ignite without the use of a spark. Rudolf Diesel created the diesel engine in Germany. The design for engines first used coal dust suspended in water and later vegetable oils, such as peanut oil. These fuels were later abandoned when petroleum became abundant and cheaper to produce.

Where does biodiesel fuel come from?

In the United States, the primary source for biodiesel is soy beans. According to the U.S. Energy Information Administration, the feedstocks break down as such:

  • Soybean Oil – 52%
  • Canola Oil – 13%
  • Corn Oil – 13%
  • Recycled feedstocks – 12%
  • Animal Fats – 10%

Even with Soybean oil as the primary source, the remaining meal is used to produce food for animal feed. For more information on feedstocks of biodiesel, here is an ongoing blog we have been working on to examine the resulting fuels produced by the various feedstock.

Where are biodiesel plants?

Here is a list of sites in the United States.

When did biodiesel begin?

The original diesel engine ran on peanut oil, so technically biodisesel was first used in the 1890s. Most oils in the 1800s were from bio stocks. It wasn’t until petroleum became abundant and thus cheaper that biofuels and oils were abandoned for this cheaper source.

When does biodiesel gel?

The feedstock determines when biodiesel will gel. The most common feedstock is soy, which has a cloud point of 0°C (32°F) for B100. Petroleum diesel has a cloud point of -45°C (-49°F) to -7°C (19°F) (Source). Cloud point refers to when the paraffin begins to crystallize and the fuel looks a little cloudy.

Biodiesel and petrodiesel is usually blended and this lowers the cloud point of biodiesel in the fuel considerably. In addition, additives are frequently added during cold weather that further lowers the cloud point.

When is biodiesel day celebrated?

National Biodiesel Day is March 18th, which is also Rudolf Diesel’s birthday. August 10th is International Biodiesel Day, a celebration of Rudolf Diesel’s prime model running for the first time on August 10, 1893.

Who invented biodiesel?

The diesel engine is defined by “any internal-combustion engine in which air is compressed to a sufficiently high temperature to ignite diesel fuel injected into the cylinder, where combustion and expansion actuate a piston.” Until petroleum was developed as a cheaper alternative, animal and vegetable oil was used. One of the first fuels used in the diesel engine was peanut oil, and thus biodiesel was born.

Can you use 100% Biodiesel even in the winter?

The answer is YES.  While biodiesel has a lower cloud point then petroleum diesel there is a technology by Optimus Technologies called the Vector System. This allows a truck to start on regular diesel until it gets up to temp and switch over to run on up to 100% biodiesel.  The City of Ames, Iowa is one success story of this technology. (Story Here)

 

do-you-have-questions-about-renewable-diesel-star-oilco-portland-oregon
Do you have questions about Renewable Diesel in Oregon? 1024 768 Star Oilco

Do you have questions about Renewable Diesel in Oregon?

Renewable Diesel delivered in Oregon

[KGVID]https://staoilcopro.wpengine.com/wp-content/uploads/2021/02/Oregon-Renewable-Diesel.mp4[/KGVID]

Imagine a superior next generation renewable diesel direct to your fleet.

 

Star Oilco is delivering R99 Renewable Diesel to fleets now.

Renewable Diesel delivered to your fleet by mobile onsite fueling or in bulk.

Imagine a fuel that is cleaner and drier than your typical diesel fuel bought in Oregon.  Now imagine that this dry and clean characteristic means a better performing fleet.  A fuel that causes less maintenance and increased performance benefits as it relates to your modern Tier 3 Diesel Emission systems.  Fewer DPF (particulate trap) regens and other post engine maintenance issues in your fleet while more power and up time reported by the drivers behind the wheel.  Now add to that a more than half reduction in CO2 emissions and Oregon has incentives for the adoption of this fuel because it is a biofuel.  A biofuel that outperforms traditional diesel in performance, emissions, and in lifecycle analysis.

That next generation biofuel is here. Renewable Diesel!

Star Oilco can deliver Renewable Diesel to your tank in Oregon and Washington.  If you are looking at this fuel we will work hard to make it easy for you regardless of how small or large your fleet. It is immediately available for bulk customers.   If you are interested in mobile on-site refueling, wet-hosing, construction job site fueling, or a retail option for the fuel we can work with you as well to make that happen.

Renewable Diesel: A Next Generation low CO2 Diesel Fuel.

This product is available in Oregon and we are excited to make getting this fuel simple.  Star Oilco is a proud seller Renewable Diesel product. If decarbonizing your fleet is your goal  while reducing the total cost of maintenance on your fleet, Star Oilco is ready to serve your needs.

Renewable Diesel is available from several manufacturers of Renewable Diesel shipped to Oregon, Washington and California.  This product being made available given it’s lower than petroleum CO2 emissions meeting the Low Carbon Fuel standards created by California, Oregon, and expected in Washington state.

Renewable Diesel clean burning

For more on Renewable Hydrocarbons, please check out the US Department of Energy’s Alternative Fuels Data Center page on the subject. 

Call Star Oilco with any questions you may have about Renewable Diesel, Biodiesel, Ethanol or other emerging alternative fuels.  We have a track record of making alternative fuels easy for those wanting to use them. Call 503-283-1256 or email OrderDesk@Star Oilco.net and we can get you in conversation with our team about a future fuel available today.

Star Oilco Crest

Star Oilco is delivering R99 Renewable Diesel to fleets in bulk and by mobile onsite fueling.

Contact Form

  • This field is for validation purposes and should be left unchanged.

For more on Renewable Diesel please also see the following:

Renewable Diesel as a major Transportation Fuel in California

Every Question Star Oilco has been asked about Renewable Diesel

Renewable Energy Group’s Ultra Clean Diesel (Renewable Diesel fuel blends)

biodiesel-feedstocks-sunflower-oil-tung-oil
Biodiesel Feedstocks – Sunflower Oil & Tung Oil 1024 683 Star Oilco

Biodiesel Feedstocks – Sunflower Oil & Tung Oil

We are nearing the end of our journey, as there is only one more blog after this one. If you would like to look back and see all of the feedstocks we have covered start here with our first post.  In this post we explore the feedstocks Sunflower Oil and Tung Oil as we continue our look into different types of feedstock that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report.

Sunflower Oil

The Sunflower oil in this project was purchased from Jedwards, International, Inc.  The common sunflower scientific name is Helianthus annuus. Sunflowers at late afternoon. Flowerheads facing East, away from the Sun.

First domesticated in the Americas the plant was exported to Europe in the 16th century and has become a staple as a cooking ingredient.  According Wildflower.org the common sunflower prefers full sun and well-drained soil. The plant grows up to 8 feet tall and has coarse hairy stems and leaves. The flowers are bright yellow surrounding a central maroon disk, that as it matures, holds the seeds and produces the oil.

The most known uses for sunflower seeds and its oils include; foods, cooking oils and butters. The pressed seed oil is useful for food and the resulting cake (matter left after the oil is harvested) is commonly used as animal food. One of the more interesting uses for the plant is, that it can produce a natural latex in its leaves. This latex can be used to produce hypoallergenic gloves.  The purpose of this post though is to discuss the possibility of biofuel created from sunflower seeds. Biodiesel magazine talks about both the pros and cons for this plant as a feedstock option:

“Because sunflower oil is priced higher than soybean and canola oils, its use as a feedstock for commercial biodiesel refining may be hindered in the U.S. market, according to the National Sunflower Association (NSA). However, there is an interest in the tall golden flowers because the seeds yield about 600 pounds of oil per acre, considerably more than soybeans, which produce a little over 500 pounds per acre.”

Because of the high value of the oil in other areas, using the oil for biodiesel can be cost prohibitive.  Higher concentrates of oil per acre can be vital as more efficiency in  biofuel production becomes necessary. According to Farm Energy, 15,000 to 25,000 plants per acre can be grown.  This means that a small or large farm can use this crop profitably or simply in the production of fuel for that farm.

Sunflower Oil and Sunflower biodiesel

 

 

Tung Oil

The Tung oil from this study was purchased from Sigma-Aldrich Co. The Tung tree, Vernicia fordii, is native to China and Vietnam.  This tree can be over 60 feet in height and is deciduous. Tung Tree at the Botanical Gardens Faculty of Science Osaka City University, Osaka, Japan According to Texas Invasive Species Institute:

“The bark is smooth, thin, and exudes white sap when cut. The leaves are simple, heart-shaped or with three lobes, and 6-10 inches long. The white flowers have 5 petals with red veins, and they bloom before the leaves emerge. The toxic fruits can grow up to 3 inches in diameter and are reddish green when fully developed.”

This tree is valued for its oil from the seeds.  Traditionally this oil was used in lamps and even as waterproofing on boats.  In more contemporary time this oil is used in varnishes and paint.  This value encouraged the importation of this tree. According to Texas Invasive Species Institute there was over 10,000 acres planted in the United States in 1927.  Cultivation of this tree has waned in the US after frosts and hurricanes destroyed many of the plantations.

This is one feedstock that isn’t part of the food vs fuel controversy.  The Tung tree and its oil is poisons to humans.  Even one seed from the fruit can be fatal, with symptoms including slowed breathing, vomiting and diarrhea.

 

Tung Oil and Tung Biodiesel

Tung Oil/Bio-diesel Certificate of Analysis

 

Last article for biodiesel feedstocks was – Soybean Oil & Stillingia Oil

If you would like to learn more about bio-diesel you can check out this post Every Question We Have Been Asked About Biodiesel

fuel-market-report-star-oilco-portland-or
Portland Oregon Fuel Market Report July 17th-23rd, 2020 1024 697 Star Oilco

Portland Oregon Fuel Market Report July 17th-23rd, 2020

Portland, Oregon Fuel Market Report

07/17/2020 – 07/23/2020 Weeks Average

A spike in COVID-19 and states reverting back phases causes price fluctuation that was unseen in the retail sector. Wholesale gasoline prices have shot down by .12 cents. Retail gasoline prices have also gone down, but not within the pacific west coast. In Oregon retail gas shot up .015 cents and Washington it went up over .02 cents.

Although diesel is still on the rise in both wholesale and retail. The wholesale rack jumped .05 cents. The retail prices had minimal jumps around .005 cents in Oregon and Washington. Our new tracking is now also able to show B20 prices jumped .04 cents.

*Chart acquired from gasbuddy.com

Rack Week Average

Wholesale Price Average

Wholesale Low

Wholesale Avg

E10

$ 1.44

$ 1.52

B5

$ 1.29

$ 1.32

B20

$ 1.19

$ 1.28

Retail Week Average

Retail Price Average

National

Oregon

Washington

E10

$ 2.19

$ 2.66

$ 2.80

B5

$ 2.44

$ 2.62

$ 2.74

 

Taxes

Taxes

Federal

State: OR

local

State: WA

Gas

.184

.36

.0-.13

.494

Diesel

.244

.36

.0-.10

.494

Fuel News Star Oilco Follows:

REG wants you to know there is biodiesel in your fuel, whether you know it or not                                          https://www.regi.com/blogs/blog-details/resource-library/2020/06/30/the-secret%E2%80%99s-out-you%E2%80%99ve-used- biodiesel?utm_campaign=ff&utm_source=enews&utm_medium=email&utm_content=ws

Big oil trying to reduce the carbon in their oil https://www.weforum.org/agenda/2020/07/oil-industry-less-time-to-decarbonize-than-it-might-think/

Another Helpful Report:

If you would like to receive this report sooner and delivered straight to your email.  Fill out the following form.

*Numbers are an accumulation from different sources including gasbuddy and AAA.

Fuel Market Email List

  • This field is for validation purposes and should be left unchanged.
biodiesel-feedstocks-caster-oil-and-cwg
Biodiesel Feedstocks – Soybean Oil & Stillingia Oil 1024 721 Star Oilco

Biodiesel Feedstocks – Soybean Oil & Stillingia Oil

This post covers one of the most common Feedstocks in the US, Soybean Oil. In addition, we are also looking into Stillingia Oil in our deeper dive into the feedstocks that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report. If you would like to learn more you can follow the link to read more here about the feedstocks we have examined in the past.

Soybean Oil

Soybean (Glycine max) is a legume that originated in East Asia.  This plant has had a long history of cultivation. Many botanists believe that this bean was first domesticated as early as 7000 BCE in China.  It grows well in warm, well-drained sandy soil.  According to Encyclopedia Britannica, Soybean plant

“The soybean is an erect branching plant and can reach more than 2 metres (6.5 feet) in height. The self-fertilizing flowers are white or a shade of purple. Seeds can be yellow, green, brown, black, or bicoloured, though most commercial varieties have brown or tan seeds, with one to four seeds per pod.”

The United States has had soybeans as part of its history as far back as 1765.  In the 1950’s the US became the world’s largest exporter of soybeans.  If you would like to learn a little bit more about how this crop became important to the US check out this link.

This edible bean has a lot of uses.  A bean is made up of about 20% oil and 80% meal. According to NC Soybean Producers Association,  most soybeans are processed for the oil.  After the oil is removed, 3% is used directly in food products with the rest of the meal used for animal feed.

The United Soybean Board breaks down which animals are using soybeans as the protein source.

“The soybean meal fed in the U.S. goes to several segments of animal agriculture.

  • Poultry eats about 67 percent.

  • Pigs consume nearly 21 percent.

  • Beef and dairy cattle use just over 10 percent.

  • The rest goes to aquatic farming like fish and shrimp, other farm animals and companion animals like horses and pets.”

The oil is then used as food (68%) such as cooking oil – most cooking oils in the US that are listed as vegetable oil is soybean oil.   This oil can be turned into biofuel later.

The rest of the oil is used to create biodiesel and other products such as candles, paints and even plastics.   This crop is important to much of the farming community in United States. If  you would like to learn more there is a plethora of information about this subject on the internet.

Soybean Oil and Biodiesel

Soybean Oil Certificate of Analysis

 

 

Stillingia Oil

The Stillingia Oil from this study comes from the Chinese tallow tree (Triadica sebifera).  Common names for this plant include; Florida aspen, grey popcorn tree, candleberry tree or chicken tree. A native plant to Eastern China and Taiwan, while it can be an invasive species in the US.  This video from UF / IFAS Center for Aquatic and Invasive Plants  talks a little bit about how the plant looks and some of the characteristic of it.

This tree has spectacular fall colors and it loves warm, and moist climates. The tree grows up to 30 to 40  feet and loses its leaves in the winter (deciduous).

There are several uses for this tree, include soap made from the seed’s aril (the extra seed covering that are white and waxy in this plant).   Use as a nectar plant for honeybees. (source) In areas with seasons it is ornamental and displays beautiful colors along with being a great shade tree in the summer.

Finally, there is a large potential for biodiesel from the seed Oil. Biodiesel magazine talks about some of the potentials for this feedstock:

As a biodiesel feedstock, both the outer coating and the kernel of the tallow tree seeds are high in oil content, as the seeds contain 45 percent to 60 percent oil. Commercial plantations in other countries typically contain about 160 trees per acre, which are trimmed low for hand harvesting. Yields average 12,500 pounds of seed per acre, which can produce 2,300 pounds of stillingia oil, 2,500 pounds of vegetable tallow, 1,400 pounds of meal and nearly 5,000 pounds of biomass waste. In China, the meal is used as a high-nitrogen fertilizer. Breitenbeck says commercially produced trees average 645 gallons of oil per acre and some experts cite yields as high as 970 gallons per acre.

Since this is an invasive species in the US the benefits and the issues will need to be compared.

Stillingia Oil Certificate of Analysis

 

 

 

Last article for biodiesel feedstocks was – Poultry Fat & Rice Bran Oil

biodiesel-feedstocks-caster-oil-and-cwg
Biodiesel Feedstocks – Poultry Fat & Rice Bran Oil 1024 721 Star Oilco

Biodiesel Feedstocks – Poultry Fat & Rice Bran Oil

Looking further into biodiesel feedstock we continue with Poultry Fat and Rice Bran Oil in our deeper dive into the feedstocks that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report. If you would like to see more you can  read more here about the feedstocks we have examined in the past.

Poultry Fat

Rendering is the process of turning the left over animal products into fat or tallow. After the common parts of the animal are harvested the remaining parts are ground up and cooked. The oil and fat is then separated from the protein solids. Poultry fat, commonly made from chicken, Poultry Fat a possible source of bio-dieselis different from other forms of fat and tallow.  It tends to have less saturated fat. According to Farm Energy:

“Beef tallow and pork lard are typically about 40% saturated (sum of myristic, palmitic and stearic acids). Chicken fat is lower at about 30-33%. For comparison, soybean oil is about 14% saturated and canola oil is only 6%. Thus, tallow and lard are usually solid at room temperature and chicken fat, while usually still liquid, is very viscous and nearly solid.”

The high content of saturated fat can be a draw back for biodiesel produced from animal products. Beef Tallow in this study produced B100 (100% biodiesel) with a cloud point of 16° C or 60.8° F.  The Poultry Fat B100 in this study had a cloud point of 6.1° C or 42.98° F, in comparison Soybean Oil B100 in the same study was 0.9° C or 33.62° F.

One of the benefits of using animal fats for biodiesel is a higher Cetane number. (Source) “cetane number is a measurement of the quality or performance of diesel fuel. The higher the number, the better the fuel burns within the engine of a vehicle.”  Petroleum based fuels have a cetane number between 40 -44, soybean based biodiesel is between 48 – 52 and animal fat based biodiesel can have values over 60. (Source)

Poultry Fat Feedstock and Bio-Diesel

Poultry Fat Certificate of Analysis

 

 

Rice Bran Oil

Rice bran oil is a vegetable oil which is greatly available in East Asia countries. It is a byproduct of rice processing, containing about 15-23% oil.  The Rice Bran Oil that was used in this study was refined, bleached, deodorized, winterized (RBDW).

Rice bran oil is similar in make up to peanut oil made up of monounsaturated, polyunsaturated, and saturated fatty acids.

While the Oil is this study was considered non-edible, when processed in other ways the oil can be used in cooking and is popular for Asian countries such as Bangladesh, China, India and Japan.

Rice Bran Oil - Feedstock and Bio-Diesel

Rice Bran Oil Certificate of Analysis

 

Last article for biodiesel feedstocks was – Palm Oil & Perilla Seed Oil

biodiesel-feedstocks-caster-oil-and-cwg
Biodiesel Feedstocks – Palm Oil & Perilla Seed Oil 1024 721 Star Oilco

Biodiesel Feedstocks – Palm Oil & Perilla Seed Oil

This deeper look into biodiesel feedstock includes one that is very controversial – palm oil. We will also be covering perilla seed oil as we continue our look into different types of feedstock that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report. Read more about the feedstocks we have examined in the past.

Palm Oil

Palm oil is produced from the fruit of oil palms such as the American oil palm Elaeis oleifera, the maripa palm Attalea maripa, and most commonly the African oil palm Elaeis guineensis which is originally native to the area between Angola and the Gambia. This plant is different than the coconut oil that that comes from Cocos nucifera. (Read here for more information about coconut oil as a feedstock.) The E. guineensis can grow between 60 – 90 feet high with a single stemmed palm tree. Fruits are ovoid-oblong drupes, ¾ inch –2 inches long, tightly packed in large bunches with 1000–3000 fruits (Source).Oil palm plantation on the slopes of Mt. Cameroon

The natural state of palm oil as a saturated fat, is slightly reddish and semisolid at room temperature. For every 225 lbs. of fruit bunches, typically 50 lbs. of palm oil and 3.5 lbs. of palm kernel oil can be extracted. Based on the picture of the sample, we can assume that this source has been refined, bleached and deodorized to remove the beta-carotene that gives it the reddish color the natural state of palm oil.

Palm oil is edible and is used as a cheap substitute for butter and other vegetable oils. In fact, palm oil is in about half of all packaged products that are sold in supermarket, and not just in the food, but in things like soaps, cosmetics, and detergents. The controversy over palm oil is where it is grown and how the farmland is acquired. The main culprit is the African palm oil tree. It has been introduced and grown in Madagascar, Sri Lanka, Malaysia, Indonesia, Central America, the West Indies and several islands in the Indian and Pacific Oceans.

The problem that arises is rainforests are being cut down and replaced with this profitable crop. The incredible diversity of the rainforest is replace with a single species, and this has led to reductions in animal habitats such as orangutans, elephants, rhinos, and tigers (Source). If you would like to know more follow some of the links that were supplied as sources.  As far as green house gases and the reduction of them a recent study by the University of Göttingen investigated the whole life cycle of the greenhouse gases and here are the results (Source):

“The researchers found that using palm oil from first rotation plantations where forests had been cleared to make way for palms actually leads to an increase in greenhouse gas emissions compared to using fossil fuels. However, there is potential for carbon savings in plantations established on degraded land. In addition, emissions could be reduced by introducing longer rotation cycles or new oil palm varieties with a higher yield. “

The other side of this argument is that the production of this oil is a lifeline for some countries. Malaysia and Indonesia alone employ 4.5 million people directly in the industry with millions more depending on palm oil production indirectly for employment (Source). Stopping the use of palm oil would endanger many of these people.

Palm Oil and Palm Oil Biodiesel

 

 

 

 

 

 

 

 

 

Biodiesel - Palm Oil Certificate of Analysis

 

 

Perilla Oil

Perilla oil comes from the plant Perilla ocymoides, a synonym for the more common name Perilla frutescens. Perilla frutescens var. japonica in Gimpo, KoreaIt is native to India and China in the mountainous regions and cultivated in China, Korea, Japan, and India. Introduced varieties of this plant are considered a weed in the United States and go by the common names Chinese basil, wild basil, perilla mint, beefsteak plant, purple perilla, wild coleus, blueweed, Joseph’s coat, and rattlesnake weed. This herb grows easily unattended, but is toxic for cattle and horses.

This annual herb is 1 ft to 6 ft tall with a square stem and green or purple minty smelling leaves. The plant takes about 4 months from germination to start flowering, and the seeds mature about 6 weeks after.

The flowers, leaves, seeds, and sprouts are all used in Japanese, Korean, and Vietnamese foods either as flavoring or a garnish. According to Pl@ant Use:

“Perilla serves as a side dish with rice and as an important ingredient in noodles, baked fish, fried foods, cakes and beverages. The leaves can be easily dried for off-season use. The purple-leaved forms, which contain large amounts of anthocyanins, are used for coloring pickled fruits and vegetables. These forms are also very decorative ornamental plants.”

While mostly used as a food, the plant is also used for an antidote for fish and crab meat allergies in Japan and has some potential as an anti-inflammatory and anti-allergic reagent.

The seeds contain 35-45 percent oil. In addition to being made into biodiesel, this oil is also used for perfumes and sweetening agents.

 

Perilla Oil and Perilla Biodiesel

Perilla Oil Certificate of Analysis

 

Last article for biodiesel feedstocks was Moringa oleifera Oil and Neem Oil

biodiesel-feedstocks-caster-oil-and-cwg
Biodiesel Feedstocks – Moringa Oil & Neem Oil 1024 721 Star Oilco

Biodiesel Feedstocks – Moringa Oil & Neem Oil

We’re continuing our deeper look into different types of feedstock that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report. This posts two feedstocks are Moringa oleifera Oil and Neem Oil.  To see more of the feedstocks we have already covered follow this link to the main page of feedstocks we have examined so far.

Moringa oleifera Oil

Moringa oleifera is a tree with the common names moringa, drumstick tree, horseradish tree and ben oil tree.The tree and seedpods of Moringa oleifera in Dakawa, Morogoro, Tanzania. This tree ranges in height from 15 to 30 feet tall, and is native to India, Africa, Arabia, Southeast Asia, the Pacific and Caribbean islands, South America, and the Philippines. This deciduous tree is fast-growing and drought-resistant. It loves sun and heat and doesn’t tolerate freezing weather. Moringa oleifera is a slender tree with drooping branches, brittle stems and whitish-grey corky bark. It has feathery green to dark-green foliage tripinnate leaves and yellowish-white flowers. The trees usually begin producing about second year about 300 pods, but it can take a few years to get to the 1000 or more pods a good tree can yield.

There are a vast amount of uses for this tree. According to Purdue University, almost every part of the plant has value as a food. The seeds can be eaten like a peanut, the roots can be eaten and taste like horseradish, and the leaves are eaten in salads, curries and used for seasoning.

The plant has other non-food uses include Moringa seeds being pressed for oil. This oil is used in arts and lubricating small and delicate machines, and it clear, sweet and odorless it is edible and is also used in manufacturing perfumes and hair products. The wood can be used to create a blue dye and the bark is used in tanning.

The oil from the seeds contain between 33 and 41 % oil. It is also known as Ben Oil, due to its content of behenic (docosanoic) acid. This oil can be used in the production of biodiesel, (Source) and the remaining seed cake can be used as fertilizer.

Morigna Oil and Morigna Biodiesel

Morigna oleifera Biodiesel Certificate of Analysis

 

 

Neem Oil

The Neem tree is also known as nimtree, Indian lilac, or margosa tree. ABHIJEET (photographer) (2014, September 19) Neem tree in banana farms at Chinawal, India. The scientific name is Azadirachta indica. This large evergreen tree that is usually 49 to 66 ft tall but can get as big as 130 ft tall. This fast growing  tree is found in India, Pakistan, Sri Lanka, Burma, Malaya, Indonesia, Japan, and the tropical regions of Australia. It has long skinny leaves that are dark green in color and produces white fragrant flowers. The flowers produce a smooth olive like fruit. The seed in the center is called the kernel which contain 40-50% of an acrid green to brown colored oil.  The oil in the REG study was pure, cold pressed neem oil that was purchased from The Ahimsa Alternative, Inc.

This tree can tolerate high to very high temperatures but does poorly in temperatures below 40o F.   It grows best in dry, sandy well-draining soil. (Source)  Neem trees are drought resistant, but begin to lose leaves in prolonged droughts. The tree propagates itself by seeding and in some non-native environments the plant has been classified as a weed.

There are many uses of the Neem tree. The wood is strong and durable, the tree is related to the mahagony family, so furniture and other durable good can be made from the wood.  The leaves are dried and used in cupboards as an insect deterrent to prevent insects from eating clothes and rice. The trees oil and products can be found in shampoos, soaps creams, toothpastes and mouthwashes. The young twigs are even used as toothbrushes in rural areas. (Source)   The oil extracted from the seeds are used as a natural insecticide, repellent and fungicide. The oil is also used as a lubricant, lamp fuel and can be turned into biodiesel.

Neem Oil & Neem Biodiesel

NEEM Biodiesel Certificate of Analysis

 

Last article for biodiesel feedstocks was Lesquerella Oil & Linseed Oil.

Caravan of white trucks on country highway under blue sky
Renewable Diesel as a Major Transportation Fuel in California 1000 723 Star Oilco

Renewable Diesel as a Major Transportation Fuel in California

RENEWABLE DIESEL IS AVAILABLE

STAR OILCO HAS RENEWABLE DIESEL FOR YOUR FLEET

In the Pacific Northwest we have gone from a complete scarcity of Renewable Diesel availability to several players having terminal positions and this next generation sustainable fuel being readily available.  Star Oilco is ready to serve you with renewable diesel in several blends to meet both your fleet’s financial and carbon budgets.

For years California has lead the west coast with availability of renewable diesel and various blends with both petroleum diesel and biodiesel fuels. This experience is available in the research paper below to help inform your fleet in making decisions about de-carbonizing your fleets.

IS RENEWABLE DIESEL WORTH THE ADDED COST?

Fleet managers fell in love with this exceptionally high quality synthetic diesel fuel. Cleaner and drier than your typical petroleum diesel quite  a few believers are willing to pay a large premium for this fuel.  There are hardcore supporters of this fuel and it’s overall ability to reduce operational cost in far excess of it’s added cost. Which raises the next question.  Is it superior to petroleum diesel?

Caravan of white trucks on country highway under blue sky

IS RENEWABLE DIESEL SUPERIOR TO PETROLEUM DIESEL?

The answer points to yes based on initial experience rating the fuel on real world performance, fuel mileage, emissions system maintenance costs, and the much lower CO2 emissions.

The whitepaper shown is probably the most in depth resource for a fleet seeking to understand the potential of renewable diesel for its own use.

Renewable diesel is a next generation diesel fuel.  It has a low CO2 footprint similar to biodiesel, yet it is a high performance fuel that reduces down time and maintenance in urban stop-and-go fleet use.  Long story short, it is an impressive fuel solving many problems associated with modern clean diesel engines.

Given the newness of this fuel along, with the few producers of it, there is a real lack of in depth research on the subject.

If you have any questions about Renewable Diesel please feel free to contact us.

RENEWABLE DIESEL AS A MAJOR TRANSPORTATION FUEL

This white paper is the most in depth examination of Renewable Diesel operating in the real world. It covers a complete view of the product from the perspective of both fleets operating it and regulators seeking to reduce emissions. In our experience this is the most complete document you are going to find to advise a fleet considering using R99 Renewable Diesel.

Whitepaper – Renewable Diesel as a Major Transportation in California: Opportunities, Benefits, and Challenges.
Whitepaper that Gladstein, Neandross and Associates produced for the Bay Area Air Quality Management District and South Coast AQMD.

This report reinforces the manufacturers of renewable diesel’s statements and many anecdotal statements from fleets using the fuel. Renewable diesel sees superior performance in both emission reduction and performance in existing diesel technology. It is a cleaner burning and lower CO2 fuel that also contributes to a lower cost of vehicle maintenance.

According to this August 2017 report, California was on course to see approximately 250,000,000 gallons of R99 fuel sold in the state that year. This is a world-shaking volume of a next generation biofuel. With these readily adopted volumes, no doubt more product will be finding its way into the marketplace. The report cites a CARB expectation of the California Renewable Diesel market growing to over 2,000,000,000 (that’s BILLION) gallons in the next decade.

biodiesel-feedstocks-caster-oil-and-cwg
Biodiesel Feedstocks – Lesquerella Oil & Linseed Oil 1024 721 Star Oilco

Biodiesel Feedstocks – Lesquerella Oil & Linseed Oil

We’re continuing our deeper look into different types of feedstock that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report. This posts two feedstocks are Lesquerella Oil & Linseed Oil.  Here is a link to the main page of feedstocks we have examined so far.

Lesquerella fendleri Oil

Lesquerella fendleri, also known as Physaria fendleri, is part of the mustard family. (Lesquerella) Physaria Fendleri part of the mustard familyThe common names of this plant are popweed and Fendler’s bladderpod. This silvery-gray perennial has four-petaled yellow flowers that grow on a plant that is about 1 to 16 inches tall. Found in plains and mesas in the southwestern United States, it requires low water usage and is one of the first of the flowering wildflowers in the spring (Source).

Lesquerella produces hairless capsules called siliques which contain 6 to 25 seeds. These seeds contain 20-28% oil with around 62% lesquerolic acid. Lesquerella oil is a source of hydroxyl unsaturated fatty acids, and is useful as a replacement for castor oil in some applications.

While there are benefits from using this seed oil, the dark reddish-brown color of the oil is a potential limiting factor. Potential selective breeding and domestication of the plant may solve this issue, but there haven’t been much momentum at this time. That being said, there have been some studies about growing this plant for its oil and the natural gum in its seed coat for commercial use.

 

Lesquerella Oil and Lesquerella Biodiesel

Lesquerella BioDiesel Certificate of Analysis

 

 

Linseed Oil

Linseed (Linum usitatissimum) is also known as flax in North America. The plant is an annual and can grow in large range of climates. Linseed Oil and SeedsFor example, it grows in Argentina, India, and Canada. Linseed oil has been traditionally used as a drying oil. According to REG report, these seeds contains 37-42% oil. The crude oil contains 0.25% phosphatides, a small amount of crystalline wax, and a water-soluble resinous matter with antioxidant properties.

As one the earliest cultivated field crops in the US, it has found many uses for its oils. Linseed oil can be used as a varnish, pigment binder or to manufacture linoleum. These applications have seen reductions in use due to synthetic options that resist yellowing. Other uses for this plant are as nutritional supplements and foods, although raw linseed oil can become rancid unless refrigerated.  After the oil has been pressed out of the seeds, the leftover residue makes great animal food.

As some of the traditional uses of the plant are replaced with other options, use of this crop for a feedstock in biodiesel is an option.

Linseed Oil and Linseed biodiesel

 

Last article for biodiesel feedstocks was Jatropha Oil, Jojoba Oil, & Karania Oil.